Autonomous Electrical Activity Induced By Cardiac Tissue Deformation In A Thermo-Electro-Mechanical Background ⋆
نویسندگان
چکیده
In a healthy heart, the mechano-electric feedback (MEF) process acts as an intrinsic regulatory mechanism of the myocardium which allows the normal cardiac contraction by damping mechanical perturbations in order to generate a new healthy electromechanical situation. However, under certain conditions, the MEF can be a generator of dramatic arrhythmias by inducing local electrical depolarizations as a result of abnormal cardiac tissue deformations, via stretch-activated channels (SACs). Then, these perturbations can propagate in the whole heart and lead to global cardiac dysfunctions. In the present study, we examine the spatio-temporal behavior of the autonomous electrical activity induced by the MEF when the heart is subject to temperature variations. For instance, such a situation can occur during a therapeutic hypothermia. This technique is usually used to prevent neuronal injuries after a cardiac resuscitation. From this perspective, we introduce a one-dimensional time-dependent model containing all the key ingredients that allow accounting for excitation-contraction coupling, MEF and thermoelectric coupling. Our simulations show that an autonomous electrical activity can be induced by cardiac deformations, but only inside a certain temperature interval. In addition, in some cases, the autonomous electrical activity takes place in a periodic way like a pacemaker. We also highlight that some properties of the action potentials that are generated by the MEF, are significantly influenced by temperature. Moreover, in the situation where a pacemaker activity occurs, we also show that the period is heavily temperature-dependent.
منابع مشابه
Electro-Thermo-Mechanical Response of Thick-Walled Piezoelectric Cylinder Reinforced by BNNTs
Electro-thermo-elastic stress analysis of piezoelectric polymeric thick-walled cylinder reinforced by boronnitride nanotubes (BNNTs) subjected to electro-thermo-mechanical fields is presented in this article. The electro-thermo-elastic properties of piezoelectric fiber reinforced composite (PEFRC) was studied by a modified XY micromechanical model capable of exhibiting full coupling relati...
متن کاملBending analysis of magneto-electro-thermo-elastic functionally graded nanobeam based on first order shear deformation theory
In this research, analysis of nonlocal magneto-electro-thermo-elastic of a functionally graded nanobeamdue to magneto-electro-elastic loads has been done. In order to formulate the problem the Timoshenko theory of beams is utilized. The principle of virtual work, Hamilton’s principle as well as nonlocal magneto-electro-thermo-elastic relations has been recruited to derive the governing eq...
متن کاملSize Dependent Nonlinear Bending Analysis of a Flexoelectric Functionally Graded Nano-Plate Under Thermo-Electro-Mechanical Loads
The effects of flexoelectricity on thermo-electro-mechanical behavior of a functionally graded electro-piezo-flexoelectric nano-plate are investigated in this paper using flexoelectric modified and the Kirchhoff classic theories. Moreover, using the variation method and the principle of minimum potential energy for the first time, the coupled governing nonlinear differential equations of the na...
متن کاملAnalytical Solution for Response of Piezoelectric Cylinder Under Electro-Thermo-Mechanical Fields
This paper presents an analytical solution for response of a piezoelectric hollow cylinder under two-dimensional electro thermo mechanical fields. The solution is based on a direct method and the Navier equations were solved using the complex Fourier series. The advantage of this method is its generality and from mathematical point of view, any type of the thermo mechanical and electrical bound...
متن کاملBuckling of Piezoelectric Composite Cylindrical Shell Under Electro-thermo-mechanical Loading
Using principle of minimum total potential energy approach in conjunction with Rayleigh-Ritz method, the electro-thermo-mechanical axial buckling behavior of piezoelectric polymeric cylindrical shell reinforced with double-walled boron-nitride nanotube (DWBNNT) is investigated. Coupling between electrical and mechanical fields are considered according to a representative volume element (RVE)-ba...
متن کامل